170 research outputs found

    Disulfide bond structure and domain organization of yeast beta(1,3)-glucanosyltransferases involved in cell wall biogenesis

    Get PDF
    The Gel/Gas/Phr family of fungal \u3b2(1,3)-glucanosyltransferases plays an important role in cell wall biogenesis by processing the main component \u3b2(1,3)-glucan. Two subfamilies are distinguished depending on the presence or absence of a C-terminal cysteine-rich domain, denoted "Cys-box." The N-terminal domain (NtD) contains the catalytic residues for transglycosidase activity and is separated from the Cys-box by a linker region. To obtain a better understanding of the structure and function of the Cys-box-containing subfamily, we identified the disulfide bonds in Gas2p from Saccharomyces cerevisiae by an improved mass spectrometric methodology. We mapped two separate intra-domain clusters of three and four disulfide bridges. One of the bonds in the first cluster connects a central Cys residue of the NtD with a single conserved Cys residue in the linker. Site-directed mutagenesis of the Cys residue in the linker resulted in an endoplasmic reticulum precursor that was not matured and underwent a gradual degradation. The relevant disulfide bond has a crucial role in folding as it may stabilize the NtD and facilitate its interaction with the C-terminal portion of a Gas protein. The four disulfide bonds in the Cys-box are arranged in a manner consistent with a partial structural resemblance with the plant X8 domain, an independent carbohydrate-binding module that possesses only three disulfide bonds. Deletion of the Cys-box in Gas2 or Gas1 proteins led to the formation of an NtD devoid of any enzymatic activity. The results suggest that the Cys-box is required for proper folding of the NtD and/or substrate binding

    Renormalized Path Integral for the Two-Dimensional Delta-Function Interaction

    Get PDF
    A path-integral approach for delta-function potentials is presented. Particular attention is paid to the two-dimensional case, which illustrates the realization of a quantum anomaly for a scale invariant problem in quantum mechanics. Our treatment is based on an infinite summation of perturbation theory that captures the nonperturbative nature of the delta-function bound state. The well-known singular character of the two-dimensional delta-function potential is dealt with by considering the renormalized path integral resulting from a variety of schemes: dimensional, momentum-cutoff, and real-space regularization. Moreover, compatibility of the bound-state and scattering sectors is shown.Comment: 26 pages. The paper was significantly expanded and numerous equations were added for the sake of clarity; the main results and conclusions are unchange
    corecore